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Abstract
Purpose: X-ray images are viewed as a vital component in emergency diagnosis. They are often used by deep learning 
applications for disease prediction, especially for thoracic pathologies. Pneumonia, a fatal thoracic disease induced 
by bacteria or viruses, generates a pleural effusion where fluids are accumulated inside lungs, leading to breathing 
difficulty. The utilization of X-ray imaging for pneumonia detection offers several advantages over other modalities 
such as computed tomography scans or magnetic resonance imaging. X-rays provide a cost-effective and easily ac-
cessible method for screening and diagnosing pneumonia, allowing for quicker assessment and timely intervention. 
However, interpretation of chest X-ray images depends on the radiologist’s competency. Within this study, we aim 
to suggest new elements leading to good interpretation of chest X-ray images for pneumonia detection, especially 
for distinguishing between viral and bacterial pneumonia.

Material and methods: We proposed an interpretation model based on convolutional neural networks (CNNs) and 
extreme gradient boosting (XGboost) for pneumonia classification. The experimental study is processed through 
various scenarios, using Python as a programming language and a public database obtained from Guangzhou Women 
and Children’s Medical Centre.

Results: The results demonstrate an acceptable accuracy of 87% within a mere 7 seconds, thereby endorsing its effec-
tiveness compared to similar existing works.

Conclusions: Our study provides a model based on CNN and XGboost to classify images of viral and bacterial pneu-
monia. The work is a challenging task due to the lack of appropriate data. The experimental process allows a better 
accuracy of 87%, a specificity of 89%, and a sensitivity of 85%.
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Introduction
Pneumonia is a kind of respiratory infection caused by 
bacteria, viruses, or fungi in lungs, with symptoms rang-
ing from mild to severe including fever, nausea, phlegm, 
cough, and chest pain [1]. Pneumonia is viewed as a se-
rious illness, especially against children less than 5 years 
old. The World Health Organization (WHO) affirms that 

pneumonia caused the deaths of more than 800,000 chil-
dren in 2017 and in 2018, a child’s death occurs every 
39 seconds. It is estimated that 11 million children will 
die from pneumonia by 2030. South Asia has the high-
est number of deaths, where India recording more than 
158,176 deaths in 2016 and 808,694 in 2018 [2]. For this 
reason, early diagnosis seems vital for ensuring effective 
care and increasing survival rates.
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Bacterial pneumonia is a kind of pneumonia infection 
caused by various external factors such as inadequate nutri-
tion, old age, excessive coldness, or complications of vari-
ous other viruses such as seasonal influenza or COVID-19. 
First aid consists of antibiotics; however, supportive care 
is required for viral pneumonia [3,4].

Pneumonia is detected by a blood or sputum analy-
sis, but in practice, tests based on imaging interpretation 
are the most requested [5]. They comprise computed 
tomography of the lungs (CT), ultrasound, magnetic 
resonance imaging (MRI), and X-ray of the chest (CXR).  
The CXR are images produced by X-ray beams after pass-
ing through the human body; the light areas within image 
show parts of dense tissue, while the dark areas denote 
regions with less compact tissue. Despite such interpreta-
tion, many factors influence the identification of an ano-
maly in a given tissue, if one exists. Hence, misinterpreta-
tions occur in regions of superimposed structure when 
using inappropriate materiel or a bad viewing angle, or 
due to patient motion during exposure to X-rays. Fur-
thermore, pneumonia symptoms share similar features 
with other chest diseases, leading to problems with image 
interpretation.

Given the significant differences in specialists’ opinions 
in image interpretation, which decreases its professional 
acceptability area limits, it seems essential to alternate 
toward automatic solutions avoiding human errors and 
helping radiologists to diagnose patients more accurately. 
Within this context, various studies have been carried 
out, including some that utilised deep learning models 
(DL) for pneumonia detection and classification, which 
is still the most effective and extensively used method for 
diagnosing diseases in general, and radiology specifically. 
DL often refers to Artificial Neural Networks (ANNs), 
which consist of a set of algorithms inspired by the hu-
man brain system. They are based on a learning concept 
that enriches a knowledge database with the environment 
experience acquired through execution. Among the best-
known ANNs architectures are the Convolutional Neural 
Networks (CNN); they outperform human capabilities 
in some visual recognition tasks, and this potential is ap-
plied in medicine to detect and classify diseases. It leads 
to accurate interpretation of pathologies and enhances the 
quality of the healthcare system [6]. 

In this paper, we present a comparative study of de-
tection and classification of pneumonia disease using 
CXR radiography. The image processing is performed by 
a CNN model for extracting X-ray image features and the 
XGboost tool for classification. The objective of the work 
is to emphasize the distinction between CXRs of healthy 
bodies and those with viral or bacterial pneumonia.  
The experimental process would ensure an effective di-
agnosis of patients and help doctors to proceed to the ap-
propriate treatment.

The paper is organized as follows: after a brief intro-
duction in section 1, an overview of related works is high-

lighted in section 2; the proposed approach is described in 
section 3; and section 4 comprises further details of the ap-
proach and a detailed experimental study. The conclusion 
of the work and future prospects are presented in section 4.

Related works 
The use of CNN for pneumonia detection has been the 
subject of various studies in recent years, due to its abil-
ity to solve complicated problems. In [5] the authors de-
veloped a cheXNet model based on a pretrained CNN; 
this model was performed using CXR images extracted 
from a dataset of various lung pathologies [7]. The model 
achieved an acceptable performance of about 76.8% re-
garding the area under the receiver operating character-
istic (AUCROC) for the case of pneumonia. Jiang et al. [8] 
used variants of pretrained CNNs for pneumonia detec-
tion; the trained process is accomplished by freezing the 
bottom layers and fine tuning the top layers. The accuracy 
reaches 94.2%. Also, in [9], Kermany et al. applied transfer 
learning to train a CNN model in order to differentiate 
between normal, viral, or bacterial pneumonia CXR im-
ages using a binary classification, and the experimental 
results reached an accuracy of 92.8%. An approximately 
similar result is obtained by a shallow CNN model pro-
posed by [10]. In [11], the authors proposed a comput-
er-aided diagnosis (CAD) system to detect pneumonia 
using 3 classification methodologies including a hybrid 
CNN (VGG-16 and VGG-19); the system offered an ac-
curacy of 98%. In [12], the authors proposed a DL model 
to detect and localize abnormalities in the CXR images,  
the related algorithm is based on 3 classifier options and 
4 model detectors using the VinDr-CXR dataset, which 
is augmented with Albumentations [13] in order to solve 
the class imbalance; the model’s performance measured 
approximately 29% in terms of mean average precision 
(MAP). Likewise, in [14] the authors proposed a set of  
2 CNN models:  Mask R-CNN and RetinaNet, for the pre-
diction and localization of pneumonia in small areas of 
CXR images. The model was tested on a database from 
Kaggle pneumonia challenge [15], and it achieved a recall 
of 79.3%. In [16], the authors developed a deep learning 
model for classification of CXR images into consolidation 
(alveolar pneumonia) and non-consolidation. The system 
allows visualization of areas of interest (AOI), which is 
used to obtain the outcome, and it achieved a result of 
92% in terms of AUC. In [17], the authors proposed an 
approach of CNN with 3 different optimizers (Adam, 
SGD, and RMSProp). Hidden layers from 1 to 5 were used 
in the design of the CNN models and trained without any 
transfer learning technique. As a result, they found that 
CNN with 4 hidden layers and SGD achieved the highest 
test accuracy of 91%. In [18], the authors proposed a fine-
tuned pre-trained deep CNN to classify CXR images of 
various pneumonia diseases. The experimental results 
showed 93.3% overall performance in terms of accuracy. 
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In terms of analysis, the presented approaches showed 
an overall effective performance, whereas the majority 
have been addressed in the CXR images to only predict the 
presence of pneumonia without considering its nature (vi-
ral or bacterial). Also, these works used various databases 
such as ChexPert [19], Chest x-ray14 [7], RSNA [15], etc. 
which include samples with just ‘pneumonia’ and ‘normal’ 
labels, which cannot rend more details about the infection 
type. To the best of our knowledge, the only dataset with 
‘normal’, ‘viral’, and ‘bacterial’ labels can be found at the 
Guangzhou Women and Children’s Medical Centre data-
set [20], which is mostly considered for binary classifica-
tion [21]. We notice also that fewer studies have addressed 
the multi-class classification of pneumonia disease; this 
is due to the complexity of the task in terms of process-
ing time. In [5], the authors extended the cheXNet model 
for the detection of all diseases available in the related 
dataset. The model’s performance varies between 73% 
and 93% based on the F1-score metric, which depends 
on the disease. In [22], the authors used a customized 
VGG-16 and achieved an accuracy of 91.8%, and in [23], 
the authors applied a multi-classification to distinguish 
between ‘COVID-19’, ‘viral pneumonia’, and ‘normal’ us-
ing a wide number of samples in which the experiment 
results reached an accuracy of 98%. In [24], the authors 
trained a CNN and proved that the accuracy of the model 
is inversely proportional to the number of classes in the 
output layer.

Proposed model
A CXR image of an infected person is characterized by 
the presence of white hazy patches. Significant fluid in 
the lungs denotes bacterial pneumonia. Such anomalies 
are, in both cases (bacterial and viral), observable as white 
spots, but without enough precision about the infection 
nature, which makes prediction more difficult. The pro-
posed model allows us to deal with this issue. It consists 
of a diagnosis and classification of CXR images using the 
power of CNNs in feature extraction and the XGboost 
ability for classification. CNNs are renowned for their 
ability to handling unseen data based on their hierarchi-
cal feature extraction process. XGboost can improve the 
predictions given by CNN, and the model’s generalization 
abilities are improved by this combination. 

Convolutional neural network 

CNNs are a type of deep neural network that can be used 
in situations involving large numbers of unprocessed data. 
Based on its capability to extract features automatically, 
CNN is viewed as a powerful tool in the computer vision 
field. It uses images as input data and considers just lo-
cal regions instead of the whole image area. This reduces 
widely the number of parameters and processing time. 

CNNs are built based on 3 types of layer: (a) convolutional 
layers, which allow extraction of the input image features 
(lines, edges, etc.), (b) the pooling layers, which decreases 
the input map’s dimensionality and retrains only impor-
tant information, and (c) the fully connected layers that 
unroll all the values into a single vector in order, leading 
to the final classification decision.

XGboost

Extreme Gradient Boosting (XGboost) is a machine learn-
ing technique that can resolve problems involving classifi-
cation or regression predictive modelling. It was developed 
by T. Chen and C. Guestrin [25] for accurate implemen-
tation of gradient boosting [26]. It also employs sequen-
tially constructed shallow decision trees to provide reliable  
results and a scalable training strategy that prevents over-
fitting.

The idea of boosting consists of generating a strong 
model by combining a number of weak models. The suc-
cess of boosting algorithms in general is due to their ca-
pacity to handle model and variable selection during the 
fitting process. When compared to other gradient boost-
ing implementations, XGboost is typically faster [27], and 
it enables column parallelism at several levels leading the 
distribution of workload among various CPU cores or 
threads.

Dataset 

To deal with the classification, we used the dataset pro-
posed by [9], available at [20]. It is built based on 3 fold-
ers (Train, Val, and Test); each one involves 2 subfolders 
(Pneumonia and Normal). The dataset encloses 5863 im-
ages of paediatric patients in the age range 1–5 years old, 
obtained from Guangzhou Women’s and Children’s Medi-
cal Centre. The distribution of images is shown in Figure 
1. Initially, all CXR images were pretreated by removing 
low quality or unreadable scans to ensure a suitable con-
trol quality. Then, they were arranged and labelled for 
training process (Figure 2) by 2 expert physicians before 
being used to train the AI system. 

Figure 1. Dataset image distribution
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Data preprocessing and augmentation

It is evident that the power of CNN depends on the data-
set size and its content quality. In another way, it seems 
difficult to acquire or to share an appropriate dataset in 
the medical field regarding ownership rights of such re-
sources. For this reason, the proposed model makes use 
of data augmentation techniques to increase the volume 
of data. This is accomplished by managing the imbalance 
of data, hence reducing the overfitting. Unlike classic aug-
mentation approaches, which are limited to simple geo-
metric transformations, we used the Albumentations tool, 
which allows image transformation operations [28]. 

Using this tool, a operations transform pipeline was 
applied: horizontal flip, random degree rotation, and ran-

dom Gaussian noise (Figure 3). The first and second ope-
rations introduce a major transformation while keeping 
the underlying data that does not impair the diagnosis 
and ana lysis, allowing the model to generalize to unseen 
data more effectively, whereas the Gaussian noise helps 
the model to be more robust to noise and artifacts that 
might be present in the data by focusing on the under-
lying features rather than memorizing specific pixel val-
ues [29].

Table 1 shows the parameters used in these operations. 
This augmentation was applied after resizing all the imag-
es to 64×64 pixels and converting them from BGR format 
to RGB format, followed by a normalization that consists 
of collapsing the inputs to the range 0 and 1 in order to 
enhance the performance of the model. 

Figure 2. Various samples of the considered dataset

 Bacteria Virus Normal Bacteria Bacteria

 Bacteria Normal Bacteria Normal

Figure 3. The data augmentation process

 Original image Horizontal flip = 0.9 Random rotate = 10 Gaussian = 0.9

 Bacteria Normal Normal Bacteria Normal



 A CNN-XGboost model for pneumonia disease classification

e487© Pol J Radiol 2023; 88: e483-e493

Table 1. List of applied augmentation pipeline with parameter values

List of augmentations Parameters

Horizontal flip p = 0.9

Random degree rotation Limit = 10

Gaussian noise p = 0.9

Figure 5. Block diagram of the proposed model architecture
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Figure 4. The proposed CNN model architecture
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The model architecture 
The proposed architecture is built upon a shallow CNN  
of 5 blocks of convolutional layers, followed by a fully 
connected layer with 128 neurons. The output is gene-
rated using another fully connected layer of 3 neurons 
representing normal, viral, and bacterial pneumonia. 
To prevent the overfitting problem during the training, 

a normalization process is performed after each convo-
lutional block. In addition, a dropout layer was inserted 
in the model to prevent the memorizing of training data 
(Figure 4). The features extracted from the training of the 
CNN are fed to the XGboost classifier, which is evaluated 
using the test data (Figure 5).

Experimental study 

Model training

The training experiments were processed using various 
hyper-parameters. We trained the CNN model firstly to 
fix initial values that lead to better results. Different ep-
och sizes were considered. Experiments showed that a set 
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of 40 epochs returns an optimal result (Table 2). Beyond 
that, the algorithm’s performance seems to be flat, and the 
model loss stopped decreasing. Hence, an early stopping 
process was added to prevent the overfitting. For train-
ing, the Adam optimizer algorithm was used with a learn-
ing rate value of 0.0001. The loss function was handled 
by a categorical-cross-entropy, and for the classification we 
used the softmax activation function in the output layer 
conjointly with L2-regularization optimizers. Table 2 
shows details about the considered hyperparameters. 

The XGboost classifier handles the second stage of 
training; it is fed a feature vector of length 52,163 that was 
extracted from CNN training by using a learning rate in 
the range 0.00001–0.1, which is considered within a wide 
variety of estimators. For the learning rate and number of 
estimators, experiments allowed for the best performance 
with values of 0.001 and 200, respectively.

As it is shown in Figure 1, the validation data are in-
sufficient to adjust the model’s hyperparameters. So, we 
split the training data by 20% to validate this model.

Experimental process 
Experiments were processed using Google Colab pro [30] 
on a A100 NVIDIA premium GPU with 27.3 Gb in the 
Python environment. We also used TensorFlow 2.11.0 and 
keras 2.11.0 as backend libraries and some other auxil-
iary tools such as sklearn for calculation of metrics and 
Numpy for image manipulation.

Within this context, various performance metrics 
were also used to evaluate the model including accuracy, 
precision, recall, and F1-score. The accuracy is defined 

as the ratio between the number of correctly predicted 
samples and the total number of samples. The precision, 
also known as specificity, estimates how well the model 
classifies a sample as positive. However, the recall or sensi-
tivity, gauges the model’s ability to detect positive samples. 
In addition, the F1-score offers a pertinent blend of recall 
and precision. These evaluation metrics are represented by 
the following equations:

                    (TP + TN)Accuracy = ––––––––––––––––––––––   (1)
                      (TP + TN + FP + FN)

                                                                 TPPrecision (or specificity) = ––––––––––––––– ((2)
                                                       (TP + FP)

                                                            TPRecall (or sensitivity) =  –––––––––––––––           (3)
                                                 (TP + FN)

                                  precision × recall
F1-score = 2 ×  ––––––––––––––––––––          (4)
                                 precis ion + recall

where TP, TN, FP, and FN denote, respectively, the 
number of samples correctly classified as positive, the num-
ber of samples correctly classified as negative, the number 
of samples wrongly classified as positive, and the number 
of samples wrongly classified as negative.

Table 3 shows the performances obtained by the vari-
ous mentioned tools during the training process including 
other gradient boosting classifiers such as Catboost [31] 
and LightGBM [32], which are trained based on default 
hyperparameters.

The learning curves of the proposed model with re-
spect to epochs are shown in Figure 6. We noticed that 
no overfitting occurred to impact the model accuracy.  
The Figure 7 illustrates the performance analysis of the 
CNN model training and its combination with the diffe-
rent gradient boosting classifiers. 

To evaluate the performance of the proposed model, 
we trained the model for a binary classification by com-
bining the viral pneumonia images with the bacterial 
pneumonia images as one class. The results are showed 
in Figures 8 and 9.

We also tested the efficiency of the used data augmen-
tation technique. The difference between the model’s per-

Table 3. Classification performance for the test set

Accuracy Precision Recall F1-score Training 
time

CNN 0.85 0.86 0.83 0.85 14 min

CNN-XGboost 0.87 0.89 0.85 0.87 7 s

CNN-Catboost 0.81 0.83 0.75 0.78 2 min 13 s

CNN-
LightGBM

0.79 0.80 0.68 0.73 57 s

Table 2. Optimal experiment results

Hyperparameter Value Hyperparameter Value

Image size 64 × 64 Output activation function SoftMax

Number of convolutional layers 10 Loss function Categorical-cross-entropy

Number of dense layers 1 Optimizer Adam

Kernel size 3 No-epochs 40

Pooling size 2 Batch size 128

Initial learning rate 0.0001 Dropout 0.7

Layer’s activation function Relu L2 normalization 0.0001
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formance with and without data augmentation is given 
in Figure 10.

Discussion
Figures 6-9 and Table 3 demonstrate, in terms of per-

formance and training time, that the hybridization of 
CNN and XGboost tools provide better results than each 
tool separately. However, the results obtained by CNN-
LightGBM were not satisfactory. Thus, the same algorithm 
with 2-way classification achieved a higher accuracy com-
pared with 3-way classification.

Table 3 indicates that the precision of the model out-
performs the recall, which means that the model was able 
to correctly classify healthy CXR images compared with 
infected CXR images. This is due to the low number of 
images in the dataset and the strong resemblance between 
viral images and bacterial images. In the case of binary 
classification, the model yields a high recall, which means 
that this algorithm successfully identified a large number 
of pneumonia cases, which is very important for early di-
agnosis. 

In regard to the literature, good performance was 
presented by [22], with an accuracy of 91.8% in distingu-

Figure 6. Curves demonstrating the performance of the CNN model for 3-way classification
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Figure 8. Curves demonstrating the performance of the CNN model for 2-class classification

0.95

0.90

0.85

0.80

0.75

0.70

0.65

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

5

4

3

2

1

0

Ac
cu

ra
cy

Pr
ec

isi
on

Re
ca

ll
Lo

ss

Model accuracy 

Model precision Model recall 

Model loss

0 5 10 15
Epochs

0 5 10 15
Epochs

0 5 10 15
Epochs

0 5 10 15
Epochs

Train
Val

Train
Val

Train
Val

Train
Val

Train accuracy          Val accuracy          Train loss         Val loss 

0.6
2

0.9
5

0.5
8

0.7
8

0.9
68

6

0.1
1

0.9
5

0.9
2

0.1
4 0.2

0.8
1

0.7
6

0.6
9 0.6

8

0.7

0.1
5

Figure 9. Comparison of the model’s performance in term of accuracy and loss for 3-class classification

Figure 10. Comparison of CNN-XGboost for 3-class classification vs. data augmentation
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ishing between normal, viral, and bacterial pneumonia. 
Within the Kaggle challenge for pneumonia detection 
in the spring of 2022, the best result was 87.018% [33]. 
Both works used fine-tuned, pre-trained CNNs (such as  
VGG-16, ResNet-50, or DenseNet), which allow general 
learned features to enhance the model’s performance. 
However, this kind of model encloses various convolu-
tional layers, leading to complex treatment, and conse-
quently requires more processing time. On the other hand, 
a similar approach was proposed by [34], which is based 
on CNN for feature extraction and XGboost, Catboost, 
LightGBM, and random forest for the classification of  
COVID-19 CXR images; LightGBM achieved the highest 
accuracy of 100%. A sparse number of 60 real data ob-
tained from Antoni Juraz University was used (30 from 
healthy individuals and 30 with COVID-19) for which we 

cannot ensure the generalizability of the model to other 
data.

The use of a combination of CNN-XGboost models 
allowed us to take advantage of the power of CNN in  
the feature’s extraction and parallelization process of  
XGboost, which reduced the execution time. Table 4 
shows an overview of results achieved by works developed 
for pneumonia classification compared to our work.

Conclusions and future perspectives
The main goal of this study was to develop a high-

precision model for real-time automated diagnosis using 
CXR images, which could help clinicians to anticipate the 
pneumonia treatment process. The paper provides a mod-
el based on convolutional neural network and extreme 

Table 4. Summary of different results achieved with regard to related works

Authors Pathology Dataset Number 
of classes

Model architecture Results

Rajpurkar et al. [5] Pneumonia Chest x-ray 14 [7] 14 Pretrained DenseNet 121 AUCROC = 76.8%

Jiang et al. [8] Pneumonia Children pneumonia 
dataset [20]

2 Inception ResNet V2 Accuracy = 94.2%

Kermany et al. [9] Pneumonia Children pneumonia 
dataset [20]

2 Transfer learning Accuracy = 92.8%

Shah et al. [10] Pneumonia Children pneumonia 
dataset [20]

2 Shallow CNN Accuracy = 92.8%

Yaseliani et al. [11] Pneumonia Children pneumonia 
dataset [20]

2 Hybrid CNN VGG16+VGG19 Accuracy = 98%

Pham et al. [12] Chest abnormalities VinDr-CXR [35] 15 ResNet and efficientNet for 
classification / FasterRCNN, yolov5 
and efficientDet for abnormality 

localisation

MAP = 29%

Sirazitdinov et al. [14] Pneumonia Children pneumonia 
dataset [20]

2 Mask RCNN and RetinaNet Recall = 79.3%

Liz et al. [16] Alveolar pneumonia 
and non-consolidation

Children pneumonia 
dataset [20] + X-ray 
pediatric pneumonia 

Xrpp dataset 

2 CNN from scratch with 5 convolutional 
layers

AUC = 92%

Wang et al. [18] Pneumonia and 
COVID-19

CovidX dataset [18] 3 Pretrained deep CNN Accuracy = 93.3%

Rajaraman et al. [22] Pneumonia Children pneumonia 
dataset [20]

3 Customized VGG16 Accuracy = 91.8%

Verma et al. [23] Viral pneumonia and 
COVID-19

Children pneumonia 
dataset [20] + BIMCV 
COVID-19 dataset [36]

3 Fine-tuned pretrained VGG16 Accuracy = 98%

Gielczyk et al. [34] COVID-19 Hospital database 
of the Antoni Jurasz 
University hospital

2 CNN-LightGBM Accuracy = 100%

Our Pneumonia Children pneumonia 
dataset [20]

3 Hybrid model CNN-XGboost Accuracy = 87%
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gradient boosting classifier to detect and classify images 
of viral and bacterial pneumonia diseases. The work was 
a challenging task due to the lack of appropriate data.  
The experimental process allows a greater accuracy of 
87%, a specificity of 89%, and a sensitivity of 85%. 

In future, we aim to enhance the model performance 
using a larger dataset, either by augmenting the data using 
more robust tools of data augmentation such as Genera-

tive Neural Networks (Gans) or by collecting more CXR 
images of pneumonia cases. We can also attempt experi-
mentation with more models to obtain greater accuracy. 
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